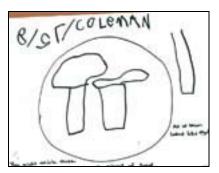

What's to Eat A Close Look at Food Around Our School

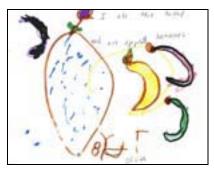
K-1 Classroom August — December 2002

Overview

"Me eating pizza"


A chalk drawing of plants

Beginning the Project


University Primary School is located in the agricultural area of the University of Illinois. Children pass the "South Farms" daily as they drive to school. The corn and bean fields are within a short walk from the school. The teachers chose the topic of food because it would be a familiar topic for everyone and could ease the transition from home to school to start the new year. This topic not only provided a vehicle for learning basic skills across the curriculum, but it also presented opportunities to explore a variety of topics in depth.

The first phase of a project is designed to uncover what the students already know about the topic. They brainstormed what they knew about food, which was then categorized to form a web (Student Food Topic Web 1). The head teacher began the project by sharing stories about going to her garden to get tomatoes and making bread in her bread machine for her sandwich. The teacher created opportunities for students to share their understandings with their peers. The students told stories about what food they had eaten for breakfast and what they were going to eat for lunch. They represented what they knew about food by drawing, painting, writing, and making models with clay, rods, pattern blocks, geoboards, boxes and junk, and paper. Students raised questions about food. The teacher and students categorized their questions to guide the upcoming inquiry:

- 1. How does food help our body?
- 2. How does our body process food?
- 3. What is in foods?
- 4. Where does food come from?
- 5. How are foods kept fresh?

"You might think these are mushrooms, but they're really pieces of toast."

"I ate this today - an apple and 4 bananas."

Developing the Project

In Phase 2, students listened to experts and engaged in field studies. Experts included: a plant biologist, a botanist, three nutritional nurses, a nutritional scientist, a parent who spoke about taste buds, a parent who made foods from scratch, a parent who brought exotic foods to taste, a physician, a pizza chef, an undergraduate nursing student, undergraduate science students, a veterinarian researcher, and an educational program coordinator from a museum. Students visited a nature center, cafeteria, corn and soybean field, greenhouse, grocery store, and two pizza shops. They also attend the play, *Jack and the Beanstalk*.

Before gathering their data, students predicted what they might learn. They collected artifacts, interviewed experts, made sketches, took photographs, jotted field notes, and videotaped their experiences. They analyzed their data and displayed their findings in graphic organizers and representations. They wrote experience stories, letters, poems, books, and captions for their drawings. At group meetings, students shared their findings. Students listened, questioned and commented about each other's work.

Students answer questions at the grocery store.

Students collaborate to make a representation of the fruit display shelf.

Concluding the Project

The students invited parents to an open house to share what they had learned about food. Groups of children chose to create murals, write reports, present a dramatic skit and read their stories and poems. Students displayed the process of their investigations about food on the walls. Students planned a potluck and were excited to share their favorite family foods with their classmates. They shared their <u>Student Food Topic Web 2</u> and created murals and artwork to depict common themes from their findings.

Plants are so important for food. Healthy animals and people need food. Favorite food is delicious and beautiful. Eating the right amount of food is important.

Students collaborate to create a mural showing plants as an important source of food.

Students display their mural at the open house.

The class prepares pizza for the pizza shop and culminating potluck.

Students wear gloves and a hat and take turns serving at the potluck.

Students made nomemade pizza as the class contribution to the potluck. They also made extra pizza and sold it in their very own "pizza shop" over the lunch hour. They sold a slice of pizza for \$1.25. Students integrated math into the project. They worked in groups to answer questions. They recorded their sales. They wanted to know the cost effectiveness of their shop. They questioned, "How many slices of pizza did we sell?" They calculated how much they

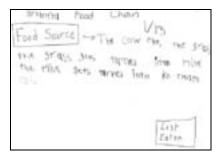
made. Students wanted to compare the pizza from each of the pizza shops to the homemade pizza. One child's comparison follows:

Comparison of Pizza

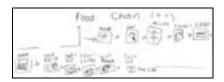
THIS WAS THE SAME

"D" Pizza Shop	Homemade Pizza at School	"PH" Pizza Shop
Crust was thick	Crust was thick	Crust was thick
Cheese was on the top	Cheese was on the top	Cheese was on the top

THIS WAS DIFFERENT


"D" Pizza Shop	Homemade Pizza at School	"PH" Pizza Shop
Did not taste garlic in the	Did taste garlic in the sauce	Did not taste garlic in the
sauce		sauce
The chef flipped the crust in	Did not flip the pizza - pressed	Did not flip the dough. The
the air.	it in the pan.	cook got it from the freezer
		already formed.
Had mozzarella	Used mozzarella and	Used mozzarella
	parmesan	
Cheese topping	Olives, ham, pepperoni	Meat balls, pineapple,
		sausage, pepperoni peppers,
		ham, mushrooms

The open house and potluck were a great success! Students enjoyed the variety of foods that represented the diverse cultures of families in the class. One parent gathered the family recipes and created a class cookbook.


What Did the Children Learn?

This project entitled, "What's to Eat: A Close Look at Food Around Our School," helped students recognize the relationship between good nutrition and a healthy body. They generated new vocabulary words that extended beyond the typical words found in most kindergarten and first grade curricula. Students learned about the pancreas, esophagus, liver, and intestines. They gained an awareness of mold spores and mycelium. They also learned about the many occupations that facilitate our consumption of food. Students became aware that food comes from a variety of sources. They explored food chains and gave their interpretations.

CS: The mouse eats the cheese. The snake eats the mouse. The hawk eats the snake. This is a food chain.

"The cow eats the grass, the grass gets turned into milk, the milk gets turned into ice cream."

"Wheat, cut, milled, flour, cook, oven, half eaten, left out, spore comes, got moldy, threw out. The end."

Students gained an appreciation for the complexity and depth of what appeared to be a familiar topic to them. They not only learned new factual information about food, but they also began to see the connections between ecosystems of nature. They associated eating a healthy diet with feeling good. They made connections between plants and the food chain. They gained pleasure from trying new foods and increased their appreciation of foods from other cultures.

Students were active investigators and researchers. They verbalized predictions and became familiar with the research process. They learned methods for collecting, organizing, and analyzing their data. The students enhanced their social skills as they collaboratively constructed models. They applied problem solving and critical thinking skills while they built representations. They strengthened their disposition to inquire.